Handle 3D coordinates of CT
 Practice with DICOM and ImageJ Part. 2

Determine the reference plane

 by measuring 3 points
Previous answer

- Please refer following two sheets in today's excel file.
- \#1-answer
- \#2-answer

\#3 \& \#4: 3D affine transformation

- Exercise 3: Parallel Translation and Rotation of Coordinates
- Exercise 4: The Last Step to 3D Affine Transformation

Right-handed system

The point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ that is the center of the reference axis or plane is converted to the origin $O(0,0,0)$.
${ }^{* *}$ This time P_{0} is the midpoint between point a and b .

Right-handed system

After translating the origin
Two rotational operations are performed to place the reference axis or reference point (e.g., the right polyon in this figure, P1) on the x-axis.

Right-handed system

Rotation of - θ degree

Z

When it is desired to place the reference axis or point (in this case, P 1) on the xy plane, if it is at a position rotated by θ around the y axis, it is sufficient to rotate by $-\theta$.
The rotation angle may be set to $\theta=\operatorname{atan}(\Delta z / \Delta x)$ using the value of $x(\Delta x)$ and the value of $z(\Delta z)$ of $P 1$.

Right-handed system

Rotation of - δ degree

0

If the reference axis or point (in this case P1) is placed on the $y z$ plane, it may be rotated by $-\delta$ if it is in a position rotated by δ around the z-axis.
The reference axis (reference point) is placed on the x axis in the two rotations.

Right-handed system

